Symbols / Semboller

- **Fixture class 2 (Isolated high voltage)**
- **Ürün sınıfı: 2 (İzoleli yüksek voltaj)**
- **Fixture class 3 (Low voltage. Electric shock protected)**
- **Ürün sınıfı: 3 (İzoleli düşük voltaj)**
- **Sulfuric for direct mounting on flammable surfaces**
- **Yanıcı yüzeylere montaj yapılabilir**
- **Interior use**
- **İç mekan kullanımlına uygun**
- **Exterior use**
- **Dış mekan kullanımlına uygun**
- **Ceiling & wall mounted**
- **Tavan ve duvarda kullanılabılır**
- **Floor & wall mounted**
- **Zemin ve duvarda kullanılabılır**
- **Wall mounted**
- **Duvara kullanılabılır**
- **Walk Over Max. Weight (Kg.)**
- **Tayyabableceği maksimum insan ağırlığı (Kg.)**
- **Cut Out size**
- **Kesim ölçüsü**
- **Standard**
- **Standart**
- **Protection level. (X) against external solid objects, (Y) against liquids.**
- **(X) Toza Karşı (Y) sıvıla karşı koruma seviyesi**
- **LED type**
- **Led tipi**
- **Driver suitable for installation in furniture**
- **Mobilya içinde kullanıma uygun beşele unitesi**

INTRO

Neo Light, bir LED aydınlatma markası olarak, iç mekan, dış mekan ve sınırda aydınlatma sektörüne 7000'den fazla ürün sunuyor. Citi Design Ltd. ltd. markaları dikkat çeker. Citi Design Ltd. 1988 yılında kurulmuş bir üretim firması oldu ve bu firmada tasarımı ve üretimi ile ilgilenmektedir.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

Only with the recent introduction of HB (High-Brightness) LEDs and HF (High Flux) LEDs, have LEDs been considered a saetable light source. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

The most significant distinction between traditional lighting devices (incandescent light bulbs, fluorescent lamp, neon tubing, etc.) and LEDs is that LEDs do not use heat or gas to generate light.

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure after being dropped or vibrated, as is incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes, are devices that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side. They are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs, or Light Emitting Diodes (a diode is a device that only allows electricity to flow through it in one direction, which is why LEDs have a positive ‘on’ side and a negative ‘off’ side) are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses of LEDs are in consumer electronics and other equipment as indicators (red or green or ‘power’ lights on a VCR or computer monitor).

An LED is a ‘Solid State’ device that contains no fragile filament or glass tube, making it extremely durable and reliable light source that can be used in ways never before possible. Technical advances have dramatically improved the reliability and the performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDs is around 50,000-100,000 hours of use, or 5 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been introduced for 25 years and continue to be used because LED use much less current than other sources and can run on low voltage DC. They are relatively small for many battery-powered applications. In very cold temperatures, LEDs turn on instantly while some fluorescents would fail to light. LEDs also generate smaller amounts of heat than their incandescent (filament) counterparts.
Compare Chart for LED to Standard Fluorescent and Incandescent

<table>
<thead>
<tr>
<th></th>
<th>LED</th>
<th>Fluorescent</th>
<th>Incandescent / Halogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumens per Watt (av g)</td>
<td>80 to 100</td>
<td>32 to 40</td>
<td>14 to 18</td>
</tr>
<tr>
<td>Wattage Equivalent at 20W</td>
<td>3 watt</td>
<td>9 watt</td>
<td>20 watt</td>
</tr>
<tr>
<td>Size per Unit</td>
<td>Smallest</td>
<td>Medium - Large</td>
<td>Largest</td>
</tr>
<tr>
<td>Heat Issue</td>
<td>Least</td>
<td>Ballast Gets Hot</td>
<td>Lamp Gets Hot</td>
</tr>
<tr>
<td>UV Stable</td>
<td>Stabilized</td>
<td>Not UV Stable</td>
<td>Stabilized</td>
</tr>
<tr>
<td>Weather</td>
<td>Not Sensative</td>
<td>Sensative</td>
<td>Sensative</td>
</tr>
<tr>
<td>Ecology / Environment</td>
<td>Minimal Issue</td>
<td>Harmful</td>
<td>Harmful</td>
</tr>
</tbody>
</table>

Lumens per Watt
- **LED**: 80 to 100
- **Fluorescent**: 32 to 40
- **Incandescent / Halogen**: 14 to 18

Wattage Equivalent at 20W
- **LED**: 3 watt
- **Fluorescent**: 9 watt
- **Incandescent / Halogen**: 20 watt

Size per Unit
- **LED**: Smallest
- **Fluorescent**: Medium - Large
- **Incandescent / Halogen**: Largest

Heat Issue
- **LED**: Least
- **Fluorescent**: Ballast Gets Hot
- **Incandescent / Halogen**: Lamp Gets Hot

UV Stable
- **LED**: Stabilized
- **Fluorescent**: Not UV Stable
- **Incandescent / Halogen**: Stabilized

Weather
- **LED**: Not Sensative
- **Fluorescent**: Sensative
- **Incandescent / Halogen**: Sensative

Ecology / Environment
- **LED**: Minimal Issue
- **Fluorescent**: Harmful
- **Incandescent / Halogen**: Harmful

CORRELATED COLOR TEMPERATURE (CCT)

Within the space exists a curve representing the chromaticity of light emitted by a theoretical piece of metal as it is superheated. As such, temperature is used to describe the color of white light. This is called Color Temperature.

If an x – y coordinate falls on the blackbody curve, it is true white light and measured in Color Temperature, or Kelvin (K).

White light that does not fall on the blackbody curve is correlated to the nearest Color Temperature and is measured in Correlated Color Temperature.
VEGA MINI WALKOVER, Ø25 mm.

- Actual size / 1/1 scale
- LED driver details: LED driver details: 1 W (350 mA - 3 VDC) Warm White (3000K)
- XLamp LED (Cree) max. 60 Lumen
- 25°

VEGA MICRO WALKOVER, Ø40 mm.

- Actual size / 1/1 scale
- LED driver details: 1 W (350 mA - 3.5 VDC) Warm White (3000K)
- XLamp LED (Cree) max. 100 Lumen
- 25°

VEGA MICRO ANGLED WALKOVER, Ø40 mm.

- Actual size / 1/1 scale
- LED driver details: 1 W (350 mA - 3 VDC) Warm White (3000K)
- XLamp LED (Cree) max. 100 Lumen
- 25°

FINISHING OPTIONS: MALZEME OPSİYONLARI:

SSM

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
</table>
| SSM 1x1W WW | SSM: 316L Stainless Steel Matt
WW: Warm White LED | 1W | 3000K | 25° | VEMIWO-1.14.16.4 |

PRODUCT NAME

FINISHES

WATT

LED COLOR

LENS ANGLE

ORDER CODE

VEGA MICRO WALKOVER, Ø40 mm.

FINISHING OPTIONS: MALZEME OPSİYONLARI:

SSM

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
</table>
| SSM 1x1W WW | SSM: 316L Stainless Steel Matt
WW: Warm White LED | 1W | 3000K | 25° | VEMIWO-1.14.16.4 |

PRODUCT NAME

FINISHES

WATT

LED COLOR

LENS ANGLE

ORDER CODE

VEGA MICRO ANGLED WALKOVER, Ø40 mm.

FINISHING OPTIONS: MALZEME OPSİYONLARI:

SSM

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
</table>
| SSM 1x1W WW | SSM: 316L Stainless Steel Matt
WW: Warm White LED | 1W | 3000K | 25° | VEMIWO-1.14.16.4 |

PRODUCT NAME

FINISHES

WATT

LED COLOR

LENS ANGLE

ORDER CODE

VEGA MICRO ANGLED WALKOVER, Ø40 mm.

FINISHING OPTIONS: MALZEME OPSİYONLARI:

SSM

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
</table>
| SSM 1x1W WW | SSM: 316L Stainless Steel Matt
WW: Warm White LED | 1W | 3000K | 25° | VEMIWO-1.14.16.4 |

PRODUCT NAME

FINISHES

WATT

LED COLOR

LENS ANGLE

ORDER CODE

VEGA - MIDI WALKOVER, Ø50 mm.

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS</th>
<th>ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM 1x4.5W</td>
<td>-</td>
<td>-</td>
<td>WW</td>
<td>25°</td>
<td>-</td>
<td>VEMAWO-1.56.16.4</td>
</tr>
</tbody>
</table>

FINISHING OPTIONS:
- SSM: 316L Stainless Steel Matt
- WW: Warm White LED

VEGA - MIDI ANGLED WALKOVER, Ø50 mm.

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED COLOR</th>
<th>LENS</th>
<th>ANGLE</th>
<th>ORDER CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM 1x4.5W</td>
<td>-</td>
<td>-</td>
<td>WW</td>
<td>25°</td>
<td>-</td>
<td>VEMAWO-1.56.16.4</td>
</tr>
</tbody>
</table>

FINISHING OPTIONS:
- SSM: 316L Matte Finish
- WW: Warm White LED

IP 65 Waterproof Connector

Actual size: 1:1 scale
VEGA - 3C WALKOVER

- **Product**: VEGA - 3C W/O.
- **Model**: 10W, 14W
- **Features**: Anti Glare, Anti Glare & Glare Mask
- **Color Temperature**: 3000K
- **Brightness**: 900 Lumen
- **Beam Angle**: 24°, 36°, 60°
- **Driver Details**: Page 138-150

VEGA - 3C DEEP WALKOVER

- **Product**: VEGA - 3C W/O.
- **Model**: 10W, 14W
- **Features**: Anti Glare, Anti Glare & Glare Mask
- **Color Temperature**: 3000K
- **Brightness**: 1200 Lumen
- **Beam Angle**: 24°, 36°, 60°
- **Driver Details**: Page 138-150

LED Driver Details

- **Model**: V3C WDW-1.31.36.25
- **Drive Mode**: 1 x 13W (350 mA-37 VDC)
- **Chip**: COB LED (CITIZEN)
- **Brightness**: 3500 Lumen
- **Color Temperature**: 3000K
- **Beam Angle**: 24°, 36°, 60°

Product Finishing Options:

- **Material**: 316L Stainless Steel Matt
- **Color**: Warm White LED

IP67 Waterproof Connector

- **Type**: NW-30100
- **Connection**: 3-pin
- **Material**: Copper/Nickel/Silver

MCSCB

- **Type**: MC-10100
- **Contact**: 10 A
- **Material**: Copper/Nickel/Silver

SSM

- **Type**: SSM-10100
- **Rating**: 10 A
- **Material**: Copper/Nickel/Silver

Rohs

- **Type**: V3C WSM-1.42.16.25
- **Rating**: 10 A
- **Material**: Copper/Nickel/Silver