READING LIGHTS & SURFACE MOUNT LIGHTS INDEX

BETA FAMILY / PAGE 12 - 13

- Beta-1P Bimini ADJ.
- Beta-1P Bimini FIXED
- Beta - 1P 45˚ ADJ.
- Beta - 1P 45˚ FIXED

TUBO FAMILY / PAGE 14

- Tubo On Wall
- Tubo In Wall

ZEN FAMILY / PAGE 16 - 17

- Zen - A In Wall
- Zen - B In Wall
- Zen - A Multi Base
- Zen - B Multi Base

MEIS FAMILY / PAGE 18 - 19

- Meis - A Multi Base
- Meis - A In Wall
- Meis - B In Wall
- Meis - A Multi Base

ARMA FAMILY / PAGE 20 - 21

- Arma - 1P / 1C
- Arma - 3C
- Arma - 6P
- Arma - 1P / 1C Deep
- Arma - 3C
- Arma - 4P
Products that operate under 12 VDC, 24 VDC, 110 VAC and 230 VAC have been used in: Ships lights, Cabin lights, Chart light, Gangway lights, Working area lights, Under cabinet lights, Cabinet interior lighting, Hidden ceiling lights, Curtain valance lights, Decks lights, Bedroom lights, Building facade lights, Elevator lights in addition to architectural lighting and outdoor applications. Its designer knows the Neo Light to create functional and elegant solutions for boats and buildings unique detail for each case serving to the high quality needs.

Neo Light is constantly improving its design and product quality, serving to both co-operating indoor and lighting projects from sales to installed projects. Products designed and manufactured by Neo Light serve their owners. First lights produced in Turkey by other local or foreign firms. Having a wide range of ranges of LED technology products. Neo Light is aiming to create a network that will serve wide range of lighting needs. In addition to architectural lighting applications.

İÇERİK

Neo Light, bir LED şirketinin marka olan, iç mekan, dış mekan ve çatı içi avcılar için hazırlanan ve mekan ve dış mekan avcılardaki seckinliğiını sağlayacak şekilde tasarlanmıştır.

Neo Light, aydınlatma amortisasyon tasarımını ve özellikleriyle birlikte projelerinPB inşa edilmiştir. Tanınmış tedarikçi tarafından yerine getirilmiş olan bu projenin kılavuzları dikkate alınarak, iç mekan avcılardaki seckinliğiini sağlamayı amaçlayan bir ürün tasarımıdır.

Neo Light, aydınlatma amortisasyon tasarımını ve özellikleriyle birlikte projelerinPB inşa edilmiştir. Tanınmış tedarikçi tarafından yerine getirilmiş olan bu projenin kılavuzları dikkate alınarak, iç mekan avcılardaki seckinliğiini sağlamayı amaçlayan bir ürün tasarımıdır.
LEDs, or Light Emitting Diodes, are a device that only allows electricity to flow through in one direction, which is why LEDs have a positive (inward and negative (outward) data are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses LEDs are in consumer electronics and other equipment as indicators like the green or red signal lights on a VCR or computer monitor.

An LED is a "Solid State" device that contains no fragile filament or glass tube, making it an extremely durable and reliable light source that can be used in ways never before possible.

Technical advances have dramatically improved the reliability and performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDS is around 50,000-100,000 hours of use, or 30 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

WHERE ARE LEDS BEING USED?

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

WHAT ARE LEDS?

LEDs, or Light Emitting Diodes, are a device that only allows electricity to flow through in one direction, which is why LEDs have a positive (inward and negative (outward) data are silicon wafers that emit photons (light) when an electrical current passes through it. The most common uses LEDs are in consumer electronics and other equipment as indicators like the green or red signal lights on a VCR or computer monitor.

An LED is a "Solid State" device that contains no fragile filament or glass tube, making it an extremely durable and reliable light source that can be used in ways never before possible.

Technical advances have dramatically improved the reliability and performance of the LEDs since they were invented in the 1960s. The lifetime for the new generation of LEDS is around 50,000-100,000 hours of use, or 30 to 40 years of normal operation. Because they are a semiconductor device, they are also very rugged and are not subject to failure when dropped or vibrated, as do incandescent and fluorescent lights.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.

LEDs are used in applications where long life and reliability is required. Many have been implemented for 25 years and continue to function. Because LEDS use much less current than other sources and run on low voltage DC, they are naturally suited for many battery-powered applications. In very cool temperatures, LEDS turn on instantly while some fluorescent lights would fail to light. LEDS also generate smaller amounts of heat than their incandescent (filament) counterparts.
Compare Chart for LED to Standard Fluorescent and Incandescent

LED ile Standart Floresan ve İnkandısan Karşılıştırma Tablosu

<table>
<thead>
<tr>
<th></th>
<th>LED (LED)</th>
<th>Fluorescent (Fluoresan)</th>
<th>Incandescent / Halogen (Aktor / Flamanlı / Halogen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumens per watt (av. g.)</td>
<td>80 to 100</td>
<td>32 to 40</td>
<td>14 to 18</td>
</tr>
<tr>
<td>Wattage Equivalent at 20W</td>
<td>3 watt</td>
<td>9 watt</td>
<td>20 watt</td>
</tr>
<tr>
<td>Longevity (average)</td>
<td>50,000 hours</td>
<td>15,000 hours</td>
<td>2,500 hours</td>
</tr>
<tr>
<td>Maintenance / Bakım</td>
<td>Zero / Sıfır</td>
<td>Ballast issues</td>
<td>Replacement / Devilimme Gıvastiği</td>
</tr>
<tr>
<td>Average Purchase Cost Compared to Incandescent / Halogen / Aktor / Flamanlı / Halogen Satın Alma Bedelli</td>
<td>3 x 2 x</td>
<td>2 x 2 x</td>
<td>2 x 2 x</td>
</tr>
<tr>
<td>Added Cost Iste Mezarlık</td>
<td>Minimal Service / Minimum Servis</td>
<td>Ballast / Service / Ballad Service</td>
<td>High Service / Yüksek Servis Bedelli</td>
</tr>
<tr>
<td>Safety Güvenlik</td>
<td>No / Gaz ve Hip / Gaz ve Cam Yık</td>
<td>Gaz ve Cam Mecrout</td>
<td>Glass ve Hip ve Cam ve Mecrout</td>
</tr>
<tr>
<td>Damage due to Shock & Vibration / İşik ve Vibrasyonda Hasar Görme</td>
<td>Zero Problem</td>
<td>Problematic / Problemlidi</td>
<td>Problematic / Problemlidi</td>
</tr>
<tr>
<td>Size per Unit / Ünitesi Boyutu</td>
<td>Small / En Küçük</td>
<td>Medium / Orta Büyük</td>
<td>Large / Büyük</td>
</tr>
<tr>
<td>Heat Issue / Isı Problemi</td>
<td>Least / Çok Az</td>
<td>Ballast / Hot Balad Sırı</td>
<td>Lamp / Hot Lamba İleri</td>
</tr>
<tr>
<td>UV / Stable / Ultra Violet</td>
<td>Stabilized / Daralı</td>
<td>Not UV / Stable / Daralı Olmaz</td>
<td>Stabilized / Daralı</td>
</tr>
<tr>
<td>Weather / Temperature Changes / Hava / Sıcaklık Değişmeleri</td>
<td>Hot Sensative / Sensatüv</td>
<td>Sensatıv / Sensative</td>
<td>Some Sensativity / Bəzən Sensativity</td>
</tr>
<tr>
<td>Ecology / Environment / Ekoloji / Çevir</td>
<td>Minimal Issues / Minimum Zarar</td>
<td>Harshılık Zarafı</td>
<td>Harshılık Zarafı</td>
</tr>
</tbody>
</table>

CORRELATED COLOR TEMPERATURE (CCT)

Within the space exists a curve representing the chromaticity of light emitted by a theoretical piece of metal as it is superheated. As such, temperature is used to describe the color of white light. This is called Color Temperature.

If an x - y coordinate falls on the blackbody curve, it is true white light and measured in Color Temperature, or Kelvin (K).

White light that does not fall on the blackbody curve is correlated to the nearest Color Temperature and this measured in Correlated Color Temperature.
BETA - 1P BIMINI ADJ.

PRODUCT NAME: BETA - 1P BIMINI ADJ.

FINISHES AND LED DETAIL:
- SSP: 316L Stainless Steel Polished
- WW: Warm White LED

LED DRIVER DETAILS: Page 138-150

DIMENSIONS:
- Min Ø32mm max Ø37mm

APPLICATION:
- Ø40 mm

LENS ANGLE: 25°

MAXIMUM LUMEN:
- 150 Lumen

PLUG AND SOCKET:
- 1 X 1W (350 mA-3 VDC) Warm White (3000K) XLamp LED (CREE)

PRODUCT FINISHING OPTIONS:
- MALZEME OPSİYONLARI:
 - SSP

BETA - 1P BIMINI FIXED

PRODUCT NAME: BETA - 1P BIMINI FIXED

FINISHES AND LED DETAIL:
- SSP: 316L Stainless Steel Polished
- WW: Warm White LED

LED DRIVER DETAILS: Page 138-150

DIMENSIONS:
- Min Ø32mm max Ø37mm

APPLICATION:
- Ø40 mm

LENS ANGLE: 25°

MAXIMUM LUMEN:
- 150 Lumen

PLUG AND SOCKET:
- 1 X 1W (350 mA-3 VDC) Warm White (3000K) XLamp LED (CREE)

PRODUCT FINISHING OPTIONS:
- MALZEME OPSİYONLARI:
 - SSP

BETA - 1P 45° ADJ.

PRODUCT NAME: BETA - 1P 45° ADJ.

FINISHES AND LED DETAIL:
- SSP: 316L Stainless Steel Polished
- WW: Warm White LED

LED DRIVER DETAILS: Page 138-150

DIMENSIONS:
- Min Ø32mm max Ø37mm

APPLICATION:
- Ø40 mm

LENS ANGLE: 25°

MAXIMUM LUMEN:
- 150 Lumen

PLUG AND SOCKET:
- 1 X 1W (350 mA-3 VDC) Warm White (3000K) XLamp LED (CREE)

PRODUCT FINISHING OPTIONS:
- MALZEME OPSİYONLARI:
 - SSP

BETA - 1P 45° FIXED

PRODUCT NAME: BETA - 1P 45° FIXED

FINISHES AND LED DETAIL:
- SSP: 316L Stainless Steel Polished
- WW: Warm White LED

LED DRIVER DETAILS: Page 138-150

DIMENSIONS:
- Min Ø32mm max Ø37mm

APPLICATION:
- Ø40 mm

LENS ANGLE: 25°

MAXIMUM LUMEN:
- 150 Lumen

PLUG AND SOCKET:
- 1 X 1W (350 mA-3 VDC) Warm White (3000K) XLamp LED (CREE)

PRODUCT FINISHING OPTIONS:
- MALZEME OPSİYONLARI:
 - SSP
TUBO ON WALL

TUBO IN WALL

PRODUCT FINISHING OPTIONS:

- **ALMA:** Alüminyum + Mat Eloksal
- **WW:** Sıcak Beyaz LED
- **B:** Mavi LED
- **R:** Kırmızı LED

LED driver details: Page 138-150

Gooseneck Length:
- 20/30 cm
- 10/20/30 cm

External Driver

Internal Driver (Driver Not Included)
<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>FINISHES</th>
<th>WATT</th>
<th>LED</th>
<th>COLOR</th>
<th>LENS</th>
<th>ANGLE</th>
<th>ORDER</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMA</td>
<td>Aluminium + Matt Anodised</td>
<td>3x1W</td>
<td>WW</td>
<td>Warm White (3300K)</td>
<td>60°</td>
<td></td>
<td></td>
<td>ALMA 3x1W WW 3300K 60°</td>
</tr>
<tr>
<td>ZEN - A IN WALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEN - A MULTI BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEN - A10 IN WALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZEN-A10 IN WALL ZENA1I - 5.16.1.5</td>
</tr>
<tr>
<td>ZEN - A20 IN WALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZEN-A20 IN WALL ZENA2I - 5.16.1.5</td>
</tr>
<tr>
<td>ZEN - A30 IN WALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZEN-A30 IN WALL ZENA3I - 5.16.1.5</td>
</tr>
<tr>
<td>ZEN - A20 MULTI BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZEN-A20 MULTI BASE ZENA2M - 5.16.1.5</td>
</tr>
<tr>
<td>ZEN - A30 MULTI BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZEN-A30 MULTI BASE ZENA3M - 5.16.1.5</td>
</tr>
</tbody>
</table>

Product Finishing Options:

Alma:
- **Material Options:**
 - Aluminium + Matt Anodised
 - Aluminium + Black Matt Anodised

Zen A:
- **Types:**
 - In Wall
 - Multi Base
- **Mounting Options:**
 - Recessed Mount
 - Surface Mount

Zen B:
- **Types:**
 - In Wall
 - Multi Base
- **Mounting Options:**
 - Recessed Mount
 - Surface Mount

Specifications:
- **LED Driver Details:** Page 138-150
- **Optional Leather Cover:** Yes/No (Driver Not Included)

LED Details:
- **3 x 1W (350 mA):**
 - Warm White (3300K)
 - Osram LED max. 120 Lumen
 - 60°

Assembly:
- **Gooseneck Length:**
 - 10/20/30 cm
- **Gooseneck Length:**
 - 10/20/30 cm
- **Gooseneck Length:**
 - 10/20/30 cm

Options:
- **Optional Leather Cover:** Yes/No
MEIS - A MULTI BASE

MEIS - A IN WALL

- **Product Name:** MEIS-A30 IN WALL
- **Finish:** Aluminium + Matt Anodised
- **Watt:** 1x1W
- **Color:** WW 3000K
- **Lens Angle:** 25°
- **Order Code:** MEIS-A30 IN WALL

MEIS - A MULTI BASE

- **Product Name:** MEIS-A30 MULTI BASE
- **Finish:** Aluminium + Matt Anodised
- **Watt:** 1x1W
- **Color:** WW 3000K
- **Lens Angle:** 25°
- **Order Code:** MEIS-A30 MULTI BASE

Product Finishing Options:
- **ALMA:** Aluminium + Matt Anodised
- **WW:** Warm White LED

MEIS - B MULTI BASE

MEIS - B IN WALL

- **Product Name:** MEIS-B30 IN WALL
- **Finish:** Aluminium + Black Matt Anodised
- **Watt:** 1x1W
- **Color:** WW 3000K
- **Lens Angle:** 25°
- **Order Code:** MEIS-B30 IN WALL

MEIS - B MULTI BASE

- **Product Name:** MEIS-B30 MULTI BASE
- **Finish:** Aluminium + Black Matt Anodised
- **Watt:** 1x1W
- **Color:** WW 3000K
- **Lens Angle:** 25°
- **Order Code:** MEIS-B30 MULTI BASE

Product Finishing Options:
- **ALBAM:** Aluminium + Black Matt Anodised
- **WW:** Warm White LED

LED Driver Details: Page 138-150

External Driver

Internal Driver (Driver Not Included)

Gooseneck Length:
- **MEIS-A30:** 10/20/30 cm
- **MEIS-B30:** 10/20/30 cm

Product Finishing Options:
- **MALZMME OPSİYONLARI**
- **ALMA**
- **ALBAM**